PROCEEDINGS

OF SCIENCE

Building Efficient Data Planner for Peta-scale
Science

Michal ZEROLA *

T

Nuclear Physics Institute, ASCR

E-mail: m chal . zerol a@j f . cas. cz

Jérome Lauret
Brookhaven National Laboratory
E-mail: j | aur et @nl . gov

Roman Bartak
Faculty of Mathematics and Physics, Charles University
E-mail: bart ak@ti.nff.cuni.cz

Michal Sumbera
Nuclear Physics Institute, ASCR
E-mail: sumbera@j f . cas. cz

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/

PROCEEDINGS

OF SCIENCE

Unprecedented data challenges both in terms of Peta-sohleng and concurrent distributed
computing have seen birth with the rise of statisticallywen experiments such as the ones rep-
resented by the high-energy and nuclear physics commubigtributed computing strategies,
heavily relying on the presence of data at the proper pladdiare, have further raised demands
for coordination of data movement on the road towards aaigekigh performance. Massive
data processing will be hardly “fair” to users or unlikely bging network bandwidth efficiently
whenever diverse usage patterns and priorities will beliegbunless we address and deal with
planning and reasoning of data movement and placementoddtinthere exist several sophis-
ticated and efficient point-to-point data transfer toofe tack of global planners and decision
makers, answering questions such as “How to bring the reduiataset to the user?” or “From
which sources to grab the replicated data”, is for most pakihg.

We present our work and status of the development of an at¢ahdata planning and scheduling
system, ensuring fairness and efficiency of data movemefiduysing on the minimal time to
realize data movement (delegating the data transfer itsedkisting transfer tools). Its princi-
pal keystones are self-adaptation to the network/senlieeation, optimal selection of transfer
channels, bottlenecks avoidance and user fair-sharerpagism. The planning mechanism re-
lies on Constraint Programming and Mixed Integer Programgrteéchniques, allowing to reflect
the restrictions from reality by mathematical constrairits this paper, we will concentrate on
clarifying the overall system from a software engineeriogpof view and present the general
architecture and interconnection between centralizeddéstdbuted components of the system.
While the framework is evolving toward implementing moreswaints (such as CPU availabil-
ity versus storage for a better planning of massive anafywisdata production), the current state
of our implementation in use for STAR is limited to a multieusmulti-site and multi-source en-
vironment for data transfers and we will present the impidces and benefit of our approach as
well as a use case in practice based on requests made witiplsahioice for sources.

13th International Workshop on Advanced Computing and ysislTechniques in Physics Research
February 22-27, 2010
Jaipur, India

*Speaker.

TThe work has been supported by the grants LC07048 and LAO8DitE Ministry of Education of the Czech
Republic, the project Czech Science Foundation P202/88/ahd by the Office of NP within the U.S. DOE Office of
Science.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen

Building Efficient Data Planner for Peta-scale Science Michal ZEROLA

Distributed

data Multiple users

Multiple requests

PLANNER 1 g
Optimization ﬁ

Coordination

Load balancing
7 S m
~
N
AN
N

N\
N

— .
¢ Sgg) Service
N=

[m:—'oo;—o— S ® v S o 5 A+ mf—fmc]

Figure 1. General view of the automated planning system. The goal é&hdeve controlled and efficient
utilization of the network and data services with a proper okexisting point-to-point transfer tools. At
the highest level of abstraction, the planner should appsar “box” between the user’s requests and the
resources.

1. Introduction

As it is widely known, distributed computing offers largertasting potential for computing
power and brings other benefits as far as it is properly etgquloiOn the other hand it introduces
several pitfalls including concurrent access, synchaiion, communications scalability as well
as specific challenges such as answering key questionshidwe to parallelize a task?” knowing
where my data and CPU power are located. In data intensiveriex@nts, like the one from HENP
community and the STAR [1] experiment, the problem is even more significant sineetésk
usually involves processing and/or manipulation of larg&adets.

This massive data processing will be hardly “fair” to userd hardly using network bandwidth
efficiently unless we address and deal with planning andréag related to data movement and
placement. In this paper we present and focus on the implextiemand software engineering part
of our ongoing work, while we refer to our previously pubkshpapers explaining in more depth
the underlying model and theoretical background.

The purpose of our research and work is to design and devalaptamated planning system
acting in a multi-user and multi-service environment asnshan Fig. 1. The system acts as a
“centralized” decision making component with the emphasisptimization, coordination and
load-balancing. The optimization guarantees the resources are not wastiecbald be shared and
re-used across users and sources. Coordination ensutgdemalsources do not act independently
so starvation or clogging do not occur, while load-balagcvoids creating bottle-necks on the
resources. The intent is not to create another point-totptzta transfer point-to-point tool, but to
use available and practical ones in the efficient manner.

1Solenoidal Tracker at Relativistic Heavy lon Collider isexperiment located at the Brookhaven National Labo-
ratory (USA). See http://www.star.bnl.gov for more infation.

Building Efficient Data Planner for Peta-scale Science

Michal ZEROLA

s

~

Request for Dataset A Request for Dataset B
-ttt T G . el 1
! 1
1
'
' ' '

i Shared path for !
separate
destinations

: = RSN ! Prague
e <" Repositories e -

Figure2: Optimization of the transfer paths with regards to the netvstructure and link bandwidth. Some
network path may be re-used to satisfy multiple requestthsame data.

Figure 3: Optimization of the transfer paths with regards to the déffe data service performance/latency.
Multiple sources for the same data may be naturally combaitednatively to avoid overload and service

clogging.

We describe the most important optimization characteristih the help of figures Fig. 2 and
3. Let us suppose there are requests for the same (or oviedamiataset from two users, while
each of them needs the dataset to be processed at his/hificdpeation. The system has to reason
about the possible repositories for the dataset, selegirtiper ones for every file (the granularity
is specified by the files in our case) and produce the transfitisgor each file. The output plan
should be optimal with an objective to the overall completiine of all transfers. Thus, this op-
timization characteristic is focusing on the network stuue and respective link bandwidth. As
illustrated in Figure 2, it is conceivable in our exampletthatimization will cause data movement
to occur once on some network links while datasets will be edaw two different destinations.
Moreover, the files are usually served by several data s\fguch as Xrootd [6], Posix file sys-
tems, Tape systems [8], ...) with different performance latehcies. Therefore, the optimization
and reasoning on where to take the files available from melpurces choice will allow making
the proper selection for a file repository, respecting thhinsic characteristic (communication
and transfer speed) and scalability (Fig. 3). In other woedssoon as multiple services and
sources are available, load balancing would immediatelaken into account by our planner.

2. Architecture

In this section, we will describe the architecture of thetays explaining briefly each com-

Building Efficient Data Planner for Peta-scale Science Michal ZEROLA

Ve
File Catalogue
pmmmmm—— —
S | S (Web interface ‘I =
Internet W/P—N, PHP 1
—— = " - MVC design pattern) -—
L —_—— = - - - 4 S

< Filé Feeder™ s
1

- database 1
population)

<

Hpss =
ﬁData Mo %

FOT

_________ -
[Planner

- Java)
- CP (Choco) "

Figure4: Architecture of the system.

ponent following the work-flow (see Fig. 4 for illustrationfend users (or stand-alone services)
generate requests using the web interface, writtdPH® following the MVC design pattern. A
request is an encapsulation of the meta-data query (asstaddrby STAR’s File and Replica
Catalogue) and the destination. The request is storedsi@ladatabase (system suppoklySQL
and PostgreSQ) in a Catalog agnostic manner (any Catalog should work aadahey have a
LFN/PFN concept our approach relies on) with the additionfdrmation like user name, group
or date of the request. Later, the component cdliéel Feedercontacts thd-ile and Replica Cat-
alogueand makes the query for the requested meta-data. The oofpurhation is stored back to
the database, including all possible locations for eveeyifila request.

The brain of the system, a component calledRlenner, takes a subset of all requests for files
to be transferred according to the preferred fair-sharetion. It creates the plan (transfer paths)
for the selected requests and stores the plan back to theagataThe individual file transfers are
handled by the separate distributed component c&legd Mover The role of these workers is to
perform a point-to-point data transfer on a particular fiollowing the computed plan. The results
and intermediate status is continuously recorded in thebdae and user can check the progress at
any time.

We can see that the whole mechanism is a combinatiateldber ative (assuring optimality)
andreactive planning (assuring adaptability to the changing enviromneSince this is crucial
to the argument, in the next section we will describe theaetiye two componentP{annerand
Data Move) serving up as a “reasoner” and a “worker”.

2.1 Planner

ThePlanner(Fig. 5-left), the brain of the system, is built on the coastt-based mathematical
model. The theoretical background and our continuous pesgwere published in several papers
([11], [10], [12]). Therefore, we will not go into details ithis paper, but only sketch out the
main principles. Constraint based approach ([7]) bringsraddmental advantage in a straight
forward mapping of the reality restrictions into the matta¢ical model. The solver uses methods
from Constraint Programming and Mixed Integer Programnaing the logic tries to minimize the

Building Efficient Data Planner for Peta-scale Science Michal ZEROLA

e ——— - N[

[¢) CrTEnE meEms H Planner as a black-box
[\,\ L characteristic !

DB conn

database connectivity
using ODBC (pyodbc)

DataMover

m (dbybkd tttttt

Dispatcher
starting data movers
for available st

Optimal transfer paths for files

= b E = { :—% :—*—: <
: i (wess — — - (For 3

Cmﬂmwiﬂmmum:: {]

: 9 Back-ends i

| Input Output] Threads
o LT AN)

Figure5: Left: Planner as a black boRight: Data Mover component.

makespan considering all possible combinations. The trgessibilities may very well contain
solutions where transferring data once on a given link lead minima or balancing between
services lead to the fastest transfers. In all cases, th@almtolution will only be determined by
the input parameters. The input consists of three partseticharacteristic of the link or network,
requests to be planned (size, logical files) and informafiiom a File (replica) Catalogueabout
possible repositories. Having all these information thigegostarts a computation and stores the
results directly into the database. The result is a compingetfer path (repository and oriented
path to the destination) for each request. Note that maltiptjuests for the same files would
be treated and accounted for in the plan. Our planning isiatsemental - we have previously
demonstrated ([9]) that a full plan or incremental plannimguld not make a large difference on
the make span overall - the gain of an incremental approatie iability to self-adapt based on the
Mover’sfeedback.

For implementation of the solver we u€doco ([2]), a Java based library for constraint pro-
gramming andsL PK ([4], [5]), a library for Mixed Integer Programming. The Zalvased platform
allows us an easier integration with already existing tdokhe STAR environment.

2.2 Data Mover

The Data Moveris the distributed component responsible for performinta deansfers in a
reactive way. Each instance is controlling data servicéBimva given computing site and also the
wide-area network connections from/to the site. It relieghee underlying data transfer tools and
uses them for data movement. In our implementation, we dichddress interoperability of data
transfer tools (which is not the object of this work) but kettin using by thé-astDataTransfer
tool (FDT [3]). The way data movers operate is reactive teags soon as a file appears at the
source node (either at a data service or in a cache space Wgfd\ transfer) it is marked as “ready
for transfer” and moved by the proper underlying tool. Asrsas the transfer is finished another
instance realizes the file is available and initiates the m@ve (along the computed path from the
solver). Our approach is also adaptive: from the initiahsfar and consequent monitoring, the
real speed can be inferred and re-injected as a parametiefaext incremental plan, helping the
system to converge toward realistic transfer rates rali@r telying on theoretical optimum alone.

Building Efficient Data Planner for Peta-scale Science Michal ZEROLA

Performance
100

9
80
70
60
50
40
30
20

Xrootd+NFS+HPSS ——
HPSS

Xrootd —=—
NFS —=—

Transferred files (%)

AR o S S AU S

10 {

o I
17:02 18:02 19:02 20:02 21:02 22:02 23:02 00:02 01:02
Time

Figure6: Left: The network and service configuration for the teRigght: The performance of the system
using 4 different configurations. On the X axis, we reprefiemtime of transfers while Y is the percentage
completion. The x-range of each curve is hence represeataitthe makespan.

TheData Moveris written inPythonlanguage and concurrent link/service control is achieved
by separate threads (Fig. 5-right).

3. Show case

To prove the validity of our planning strategy, a use casedesgned and implemented. The
purpose of the test was to affirm the software components amdkcommunicate in the expected
way and the quality of the computed plan is confident. Therenment was for simplicity formed
by two computing sites, the cent®@NL and remotdPrague. The available data servicesBiNL
were: Xrootd NFSandHPSS while in Pragueonly NFSwas available. The wide area network
(WAN) transfer was controlled by FDT. The configuration iswi in Fig. 6-left. The test hence
challenges the planner in making proper decisions whenpieikources are available at the same
site.

The request consisted of files available at all data serat®bIL at the same time and the task
was to bring them to thBragueNFS service. The test was composed of four different cordigur
tions. The planner consecutively considered:

e only Xrootd repository

e only NFS repository

e only HPSS repositories

e a combination of Xrootd, NFS and HPSS repository conculgrent

The results of each configuration are shown in Fig. 6-righé. e&pected, while all files are
located on mass storage in STAR, transfers ftdRSS(in green) are the longest to accomplish
and hence, lead to the longest delays in delivery. In ourmpsdhe green and blue curves are
near equivalentNFSdirect transfers are slightly faster) but it is to be noteat thot all files are
held onNFS (central storage) in STAR and pulling all files frokrootd may cause significant
load on a system in use primarily for batch based user asaffisince, an additional load is not

Building Efficient Data Planner for Peta-scale Science Michal ZEROLA

desirable). When we combined all storage sources, the pakesas equivalent to the one from
Xrootd while the relative ratio of files transfers from the diverserees was 19%, 38% and 43%
for HPSS NFSand Xrootd respectively with no load caused on any of the services. Atetid,
the overall bottleneck was only the WAN transfer speed - wWeriour test proved the planner
works as expected, since the full reasoning consideringoalsible repositories led to the optimum
makespan. Additionally, the utilization of all servicesnlgs the advantage in the form of load-
balancing and automatic use of replicas.

4. Conclusions

When multiple sources for files or datasets are availablegalith many CPU resources in a
distributed computing environment, planning is needechtuee load balancing, efficient and fair
data movement and best use of the resources. Random acdidss amd datasets by users could
easily destroy efficiency or render sites inoperative artthiwithis in mind, we have tackled the
challenge of coordination of data transfers.

In this work, we specifically presented the architecture ponents and implementation of a
framework, in test mode in the STAR experiment, which goabiaddress the planning challenges
of transfers over widely distributed resources. Based ostcaint and mixed integer programming
techniques, the tool was designed to incorporate elemerdshieve optimization, coordination
and load-balancing. Its simple yet robust architectumaadlusers to express their requests for files
via a Web interface while a back-end planner and set of dateeradake care of the movement
on the user’s behalf. Within our test example of moving filestsingle destination considering
a dataset available from multiple-sources, we have shoheatdour approach lead to an optimal
plan that is, producing the shortest possible makesparewhilsing no load on any of the storage
systems by automatically load-balancing. With our modeb¥ged to work in simulated mode
[10]) and this proof of principles, we are equipped with anesrstone functional architecture and
we will pursue as next steps multi-users and multi-sitessfiers.

References

[1] STAR Collaboration: J. Adams. Experimental and theioe¢tthallenges in the search for the quark
gluon plasma: The STAR collaboration’s critical assesdroéthe evidence from RHIC collisions.
Nuclear Physics A757:102, 2005.

[2] Choco. http://www.emn.fr/.

[3] FDT. http://monalisa.cern.ch/FDT.

[4] GLPK. http://www.gnu.org/software/glpk/.
[5] GLPK-java. http://glpk-java.sourceforge.net/.

[6] A.Hanushevsky, A. Dorigo, and F. Furano. The Next Geti@naRoot File Server. IfProceedings of
the Computing in High Energy and Nuclear Physics (CHEP) ernrfce pages 680—683, 2005.

[7] Helmut Simonis. Constraint applications in networks.H Rossi, P. van Beek, and T. Walsh, editors,
Handbook of Constraint Programminghapter 25, pages 875-903. Elsevier, 2006.

Building Efficient Data Planner for Peta-scale Science Michal ZEROLA

[8]

[9]

[10]

[11]

[12]

Danny Teaff, Dick Watson, and Bob Coyne. The Architeetaf the High Performance Storage
System (HPSS). IRroceedings of the Goddard Conference on Mass Storage ahdgies
pages 28-30, 1995.

Michal Zerola, Roman Bartak, Jérdme Lauret, and MichahBera. Using constraint programing to
resolve the multi-source / multi-site data movement paadin the grid. IMAdvanced Computing
and Analysis Techniques in Physics Rese&a8(ACAT08) 039, 2008.

Michal Zerola, Roman Bartak, Jérdome Lauret, and Micainbera. Efficient Multi-site Data
Movement in Distributed Environment. Proceedings of th&(" IEEE/ACM International
Conference on Grid Computing (GRIJages 171-172. IEEE, 2009.

Michal Zerola, Roman Bartak, Jérdbme Lauret, and Micanbera. Planning Heuristics for Efficient
Data Movement on the Grid. IRroceedings of thé™™ Multidisciplinary International Conference on
Scheduling: Theory and Applications (MISTAages 768—771, 2009.

Michal Zerola, Roman Bartak, Jérdme Lauret, and Midanbera. Using Constraint Programming
to Plan Efficient Data Movement on the Grid. Pmoceedings of th1% International Conference on
Tools with Artificial Intelligence (ICTAl)pages 729-733. IEEE, 2009.

